

Instance selection improves cross-lingual model training for fine-grained sentiment analysis

July 30th, 2015

Roman Klinger and Philipp Cimiano roman.klinger@ims.uni-stuttgart.de IMS, University of Stuttgart and CITEC, Bielefeld University

- Training data is available in one language but not in another:
 - ⇒ How can we automatically translate and project?
 - \Rightarrow What is the performance?
 - ⇒ Can we improve by instance filtering with translation quality estimation?

Motivation

Results

Methods

- Model: Supervised probabilistic model for joint aspect and evaluating phrase detection
- Translation: Google Translate API
- Alignment: FastAlign
- Projection: Shortest match including all tokens aligned with an annotation
- Filtering: Based on machine translation quality estimation:
 - Language model for source language
 - Language model for target language
 - Likelihood of alignment

Motivation

Methods

Results Teaser for Aspects

- In-target-language Training: 41 % *F*₁ measure
- **Projection:** 23 % F_1 measure
- Filtering: 47 % *F*₁ measure

University of Stuttgart

Germany

Results

Motivation

Research Questions

- Sentiment Analysis/Opinion Mining are important for a lot of domains Annotated corpora are mainly available for English
- What is the performance on the task when.
- Our goal: Automatically building annotated resources by machine translation and annotation projection which enable supervised training of models with performance competitive to in-target-language training
- -... training data for the source language is projected into a target language when training data for the target language is available?
- Can the nerformance be increased by selection binb quality translations?

Methods Model

Machine Translation and Projection

 Probabilistic model to obvise detection based on surface features and dependency parsing MCMC interance for counled prediction of evaluating phrases and aspect phrases

. No prior knowledge in addition to training corpus Immomentation available¹ hased on FACTORIE

 Onen Source Tool (e.o. Moses SMT): - Choice of parallel training corrus difficult: FurnParl only mentions few relevant moments . Instead: Google Translate² and alignment as postprocessing with FastAlign . Projection transfers annotation to the shortest phrase in the target language which contains all tokens in the source language annotation

Quality Estimation and Filtering

. Idea: Do not use all instances but only the ones which are "good" - similar to real language. We use three SMT quality measures:

- based on FastAlion

Data

aart.de

USAGE Corpus for German and English

. Corpus of Amazon Reviews for different products in two languages Sentence-wise manual annotation of quality for all translations de--en ³ Cross-domain evaluation: Train on six product categories and test on one Test on manually annotated data in target language

Different Thresholds (de...en)

Precision Recall F.

Contact: Roman Klinger, roman.klinger@ims.uni-stuttgart.de

- 1. Source language probability based on language model
- based on language model
- 2 Tarnet Janquage probability
- 3 Likelihood of alignment