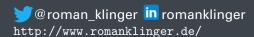


Sentiment and Emotion Analysis from Text

KULWI Workshop

November 19, 2018

Roman Klinger



Outline

1 Sentiment Analysis

- 2 Emotion Analysis
- 3 Emotion Classification in Literature
- 4 Conclusion

Outline

1 Sentiment Analysis

- 2 Emotion Analysis
- 3 Emotion Classification in Literature
- 4 Conclusion

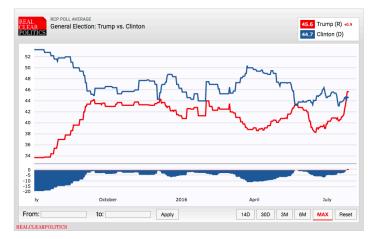
Idea of Sentiment Analysis (often synonymously used with "Opinion Mining")

• To extract the opinion of some holder towards a target

Examples

- Decide if product is positive or negative based on reviews
- Predict outcome of an election based on all Tweets mentioning a party or politician
- •

Motivation: Track Opinion over time



http://www.realclearpolitics.com/epolls/2016/president/us/general_election_trump_vs_clinton-5491.html

University of Stuttgart Roman Klinger November 19, 2018 3 / 44

Motivation: Use Cases and Applications

Task Definitions

Idea of Sentiment Analysis (often synonymously used with "Opinion Mining")

• To extract the opinion of some holder towards a target

Simplification: Text Classification

• Input: Text

• Output: Class (positive, negative, neutral)

University of Stuttgart

Sentiment Analysis as Text Classification

University of Stuttgart Roman Klinger November 19, 2018 6 / 44

Sentiment Analysis as Text Classification

Review for trash can

Great Deal!!!! ... Shopped around for stainless steel trash can and the price and look and performance is awesome. Now I know people have complained about the motion sensor stopped working, but had for a few months and on a couple of occasions it did stop working, but due to the trash was up to the lid and hit the turn off button on the underside of the lid. The trash can seems be very good quality and looks great. The only complaint or recommendation would be to place the on and off switch inside the lid elsewhere or in a compartment where as it can be accidentally turned off.

http://www.amazon.com/dp/B0031M9H3A

University of Stuttgart Roman Klinger November 19, 2018 7 / 44

More examples...

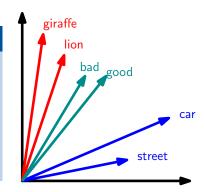
- "Elvis Mitchell, May 12, 2000: It may be a bit early to make such judgments, but Battlefield Earth may well turn out to be the worst movie of this century."
- "This film should be brilliant. It sounds like a great plot, the
 actors are first grade, and the supporting cast is good as
 well, and Stallone is attempting to deliver a good
 performance. However, it can't hold up."
- "Read the book"

University of Stuttgart Roman Klinger November 19, 2018 8 / 44

State of the art in Sentiment Classification

Prerequisite 1

- Words are represented in vector space
 - Cooccurrence count, word2vec,...
- High-dimensional space, based on context



Prerequisite 2

- Vector space captures sentiment
- Typically not the case

University of Stuttgart Roman Klinger November 19, 2018 9/44

Make Vector Spaces Sentiment Aware

Retrofitting to Dictionary

- Given vector space and dictionary of positive/negative words
- Move words of same polarity close to each other
- Faruqui et al. (2015)

Joint Learning

- Adapt vector space such that classification of document works better
- Tang et al. (2014)

Barnes/Klinger/Schulte im Walde: Assessing state-of-the-art sentiment models on state-of-the-art sentiment datasets. WASSA 2017

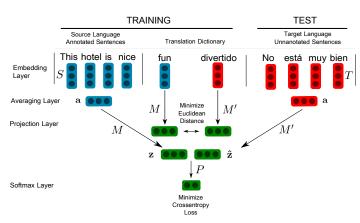
University of Stuttgart Roman Klinger November 19, 2018 10 / 44

Our Recent Work: Cross-Domain, Cross-Lingual

- Annotation is tedious and expensive
- Given an ...
 - Annotated corpus in source language/domain
 - Translation dictionary between source and target
 - Vector spaces in both domains/languages
- ...how can we build a model for the target domain?

University of Stuttgart Roman Klinger November 19, 2018 11 / 44

Model Architecture



Barnes et al.: Bilingual Sentiment Embeddings: Joint Projection of Sentiment Across Languages. ACL 2018

Barnes et al.: Projecting Embeddings for Domain Adaptation: Joint Modeling of Sentiment Analysis in Diverse Domains. COLING 2018

University of Stuttgart Roman Klinger November 19, 2018 12 / 44

Aspects and Subjective Phrases

Review for trash can										
Great Deal!!!!	stainles	stainless steel trash can								
price look	performance av	vesome								
	mot	ion sensor stopped								
working										
	trash	lid								
turn off button	underside lid	trash can								
seems be very good qua	lity looks great	only complaint								
recommendation	place the on	place the on and off switch								
lid	compartment									

http://www.amazon.com/dp/B0031M9H3A

University of Stuttgart Roman Klinger November 19, 2018 13 / 44

Approaches for Targeted Sentiment Analysis

Closed Domain

- Given predefined set of relevant aspects
- · Build classifiers for each aspect

Open Domain

- First detect aspect mention, then classify context
 - e.g. Hazarika et al. 2017: Modeling Inter-Aspect Dependencies for Aspect-Based Sentiment Analysis. NAACL 2018
 - Barnes/Klinger: crosslingual/crossdomain, JAIR, in review
- Joint models to extract subjective phrases and aspect mention
 - Klinger: ACL 2013, CoNLL 2015

University of Stuttgart Roman Klinger November 19, 2018 14 / 44

Outline

1 Sentiment Analysis

- 2 Emotion Analysis
- 3 Emotion Classification in Literature
- 4 Conclusion

So happy that America is making it possible for ALL of its people to be married to the ones they love! #MarriageEquaility

Which emotions are expressed?

Anger Anticipation Disgust Fear Joy Sadness Surprise Trust

University of Stuttgart

Folgen

I'm not angry... just aggressively disappointed.

Which emotions are expressed?

Anticipation Disgust Fear Sadness Surprise Anger Jov

University of Stuttgart Roman Klinger November 19, 2018 16 / 44

Why criticise religions? If a path is not your own. Don't be pretentious. And get down from your throne. #religion #peace

#worldpeace

Original (Englisch) übersetzen

22:11 - 25. Juni 2015

Which emotions are expressed?

Anger Anticipation Disgust Fear Joy Sadness Surprise Trust

What is Emotion Analysis?

Sentiment analysis

positive vs. negative (neutral, mixed)

Emotion analysis discrete (Ekman/Plutchik)

discrete emotion classes

Subjectivity analysis

subjective vs. objective

Emotion analysis cont. (Posner/Russell/Peterson)

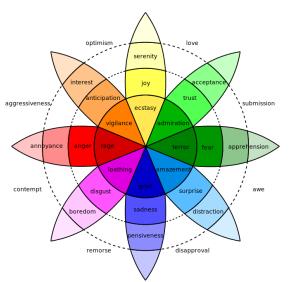
valence and arousal

Emotion Models: Ekman



University of Stuttgart Roman Klinger November 19, 2018 19 / 44

Emotion Models: Plutchik's Wheel

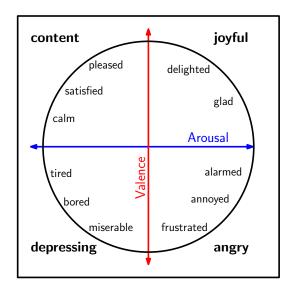


- Anger
- Anticipation
- Disgust
- Fear
- Joy
- Sadness
- Surprise
- Trust

Models opposing emotions and intensity!

University of Stuttgart Roman Klinger November 19, 2018 20 / 44

Emotion Models: Continuous



University of Stuttgart Roman Klinger November 19, 2018 21 / 44

Happy

Sad

Fear

Anger

Surprise

Disgust

Corpora

Dataset	Type	Annotation	Size	Avail.	
AffectiveText		# + {valence}	1,250	Strapparava (2007)	D-U
Blogs	Ø	# + {mixed, noemo}	5,025	Aman (2007)	R
CrowdFlower	y	## + {fun, love,}	40,000	Crowdflower (2016)	D-U
DailyDialogs	Q	10 10 10 10 10 10	13,118	Li et al. (2017)	D-R0
Electoral-Tweets	y	*	4,058	Mohammad (2015)	D-R0
EmoBank	a 🖹 C		10,548	Buechel (2017)	CC-by4
EmoInt	y	<pre>- {disgust, surprise}</pre>	7,097	Mohammad (2017)	D-R0
Emotion-Stimulus		+ {shame}	2,414	Ghazi et al. (2015)	D-U
fb-valence-arousal	f	4.00		Preoțiuc (2016)	D-U
Grounded-Emotions	¥	© 3	2,585	Liu et al. (2017)	D-U
ISEAR	å	₩ + {shame, guilt}	7,665	Scherer (1997)	GPLv3
Tales		10 TH	15,302	Alm et al. (2005)	GPLv3
SSEC	7	*	4,868	Schuff et al. (2017)	D-RO
TEC	¥	# + {±surprise}	21,051	Mohammad (2012)	D-RO

Bostan/Klinger, COLING 2018

University of Stuttgart Ror

Task Description and Research Question

Corpus Generation Task

 4870 Tweets with preexisting annotation of sentiment and stance (SemEval 2016)

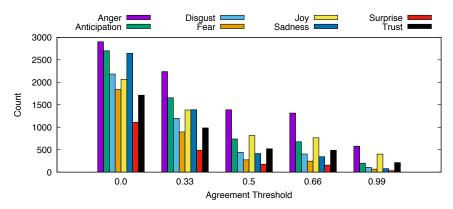
Research Questions

- What's the inter-annotator agreement?
- Which annotation layers interact?
- How well is it possible to computationally estimate such annotations?

Schuff et al, WASSA 2017

University of Stuttgart Roman Klinger November 19, 2018 24 / 44

Label Counts



- ⇒ Seldom that all annotators agree
- ⇒ Low number of majority vote annotations
- ⇒ Low quality of annotation combination?

University of Stuttgart

Difficult Examples (1)

That moment when Canadians realised global warming doesn't equal a tropical vacation #BCwildfire #Canadaburns #globalwarming

Original (Englisch) übersetzen

17:59 - 7. Juli 2015

Anger Anticipation Disgust Fear Joy Sadness Surprise Trust > 0.33 > 0.33

University of Stuttgart Roman Klinger November 19, 2018 26 / 44

Difficult Examples (2)

"2 pretty sisters are dancing with cancered kid"

Anger Anticipation Disgust Fear Joy Sadness Surprise Trust > 0.0 > 0.0 > 0.0 > 0.0 > 0.0

University of Stuttgart

Roman Klinger

November 19, 2018

Cooccurrences of Labels

		Emotions						S	Sentiment			Stance		
	Anger	Anticipation	Disgust	Fear	yor	Sadness	Surprise	Trust	Positive	Negative	Neutral	In Favor	Against	None
Anger	2902	1437	1983	1339	774	2065	711	640	275	2534	93	630	1628	644
Anticipation		2700	1016	1029	1330	1369	482	1234	1094	1445	161	772	1291	637
Disgust			2183	1024	512	1628	526	404	126	2008	49	429	1291	463
Fear				1840	466	1445	407	497	306	1445	89	448	982	410
Joy					2067	682	438	1101	1206	750	111	596	952	519
Sadness						2644	664	613	345	2171	128	604	1429	611
Surprise							1108	222	219	801	88	257	521	330
Trust								1713	1082	558	73	500	860	353
Positive							_		1524			485	673	366
Negative									1524	3032	0	622	1665	745
Neutral										3032	312	97	71	144
Neutrai											312			144
In Favor												1204	0	0
Against													2409	0
None														1255

 Many cooccurrences as expected (pos w/ pos, neg w/ neg)Positive Anger Negative Joy Positive Disgust

University of Stuttgart

Examples

Positive Anger

"Lets take back our country! Whos with me? No more Democrats!2016"

"Why criticise religions? If a path is not your own. Don't be pretentious. And get down from your throne."

Negative Joy

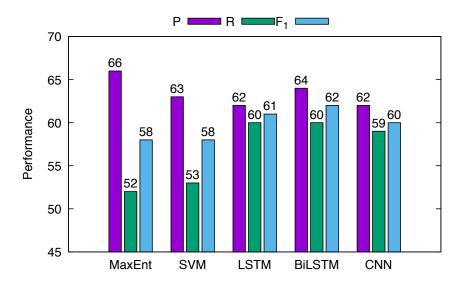
"Global Warming! Global Warming! Global Warming! Oh wait, it's summer."

"I love the smell of Hillary in the morning. It smells like Republican Victory."

Positive Disgust

"#WeNeedFeminism because #NoMeansNo it doesnt mean yes, it doesnt mean try harder!"

University of Stuttgart Roman Klinger November 19, 2018 29 / 44



University of Stuttgart

Roman Klinger

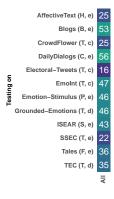
November 19, 2018

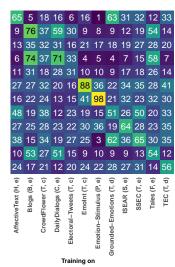
F1-score

75 50

25

Transfer learning between corpora





Outline

1 Sentiment Analysis

- 2 Emotion Analysis
- 3 Emotion Classification in Literature
- 4 Conclusion

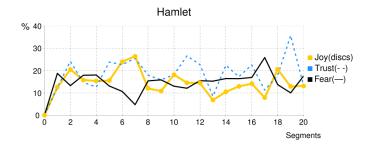
Literary Studies

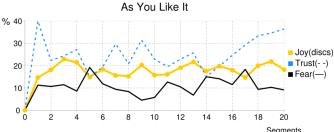
Our Research Question

Can we characterize literature with the help of emotion analysis?

Gaspar Melchor de Jovellanos painted by Francisco José de Goya y Lucientes

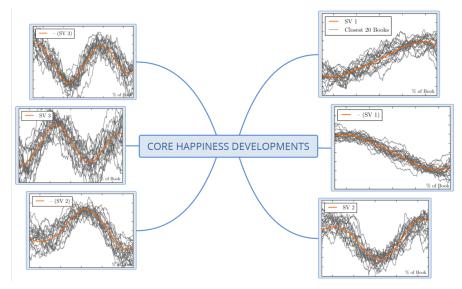
Previous Work: Mohammad, 2011





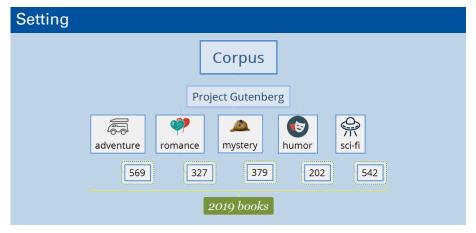
34 / 44

Previous Work: Reagan, 2016



University of Stuttgart Roman Klinger November 19, 2018

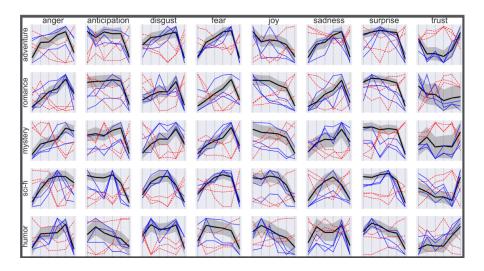
Can we use this information to predict genres?



Kim et al, LaTeCH-CLfL 2017

University of Stuttgart Roman Klinger November 19, 2018 35 / 44

Genres and Emotion



University of Stuttgart Roman Klinger November 19, 2018 36 / 44

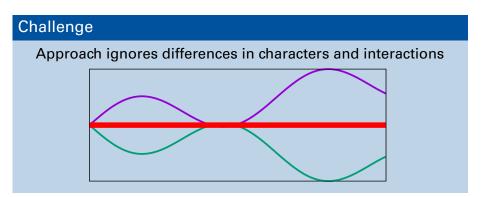
Results in Short

- Emotion development curve enables classification ($F_1 \approx 0.6$)
- Word-based classification much better (F₁ ≈ 0.8)
- Only with Emotion-words: even slighly better (F₁ ≈ 0.81)
- Information is complementary

University of Stuttgart Roman Klinger November 19, 2018 37 / 44

Summary and Future

 Emotion curves and words predict genres clearly better than random



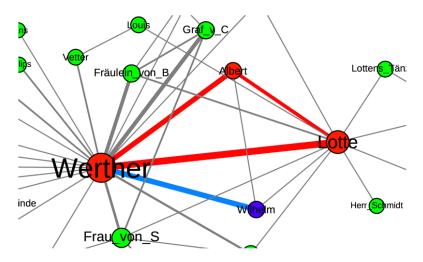
University of Stuttgart Roman Klinger November 19, 2018 38 / 44

Current Work: Structured Emotion Prediction

REMAN Corpus (Kim, COLING 2018)

University of Stuttgart Roman Klinger November 19, 2018 39 / 44

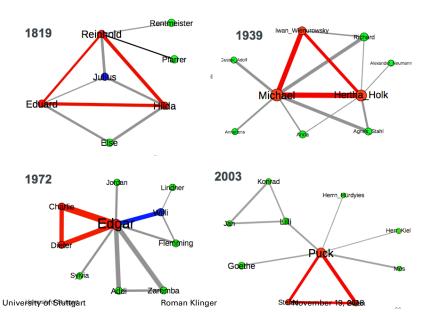
Emotion Character Networks



(Barth, Kim, Murr, Klinger. DHd 2018)

University of Stuttgart Roman Klinger November 19, 2018 40 / 44

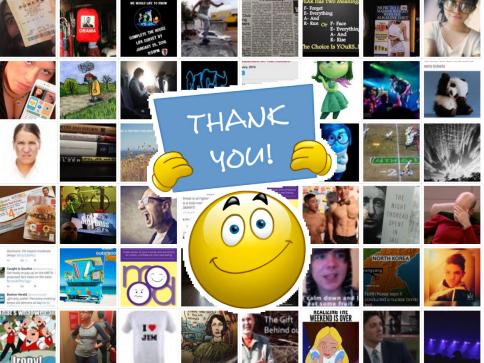
Emotion Character Networks

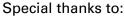


Conclusion

- · Emotion analysis backed well by psychology
- Transfer to natural language processing incomplete
- Models typically overfit to text source or domain
- Huge potential in applications across different domains

University of Stuttgart Roman Klinger November 19, 2018 42 / 44





Laura Bostan

Evgeny Kim

Jeremy Barnes

Enrica Troiano

More thanks to:

Sebastian Padó, Sabine Schulte im Walde, Hendrik Schuff, Saif Mohammad, Alexandra Balahur, Orphée De Clercq, Florian Barth, Sandra Murr, Matthias Hartung,...

