Inter-Event Dependencies support Event Extraction from Biomedical Literature

Roman Klinger Joint Work w/ Sebastian Riedel and Andrew McCallum

9th September 2011 MIND Workshop at ECML-PKDD 2011

BioNLP	IDF	Document Wide Inference	Results	Summary
00000000	00000		0000	000
Overview				

1 The BioNLP 2009 Shared Task on Event Extraction

- Task Definition
- Examples
- Approaches and Motivation
- Results

2 Imperatively Defined Factor Graphs (IDF)

- Factor Graphs
- Templates
- FACTORIE
- 3 Document Wide Inference for the BioNLP Shared Task with IDF
 - Variables, Data Structure, Templates, Sampling, Objective
- 4 Results
- 5 Summary

BioNLP	IDF	Document Wide Inference	Results	Summary

Overview

1 The BioNLP 2009 Shared Task on Event Extraction

- Task Definition
- Examples
- Approaches and Motivation
- Results

2 Imperatively Defined Factor Graphs (IDF)

- Factor Graphs
- Templates
- FACTORIE
- 3 Document Wide Inference for the BioNLP Shared Task with IDF
 Variables, Data Structure, Templates, Sampling, Objective
- 4 Results
- 5 Summary

BioNLP	IDF	Document Wide Inference	Results	Summary
0000000				

The BioNLP 2009 Shared Task on Event Extraction

- BioNLP Competition
- Data Set based on Genia Corpus

BioNLP	IDF	Document Wide Inference	Results	Summary
0000000				

The BioNLP 2009 Shared Task on Event Extraction

- BioNLP Competition
- Data Set based on Genia Corpus

Task

- Extract event descriptions from biomedical abstracts
- Events of interest
 - Gene Expression, Transcription, Protein Catabolism, Phosphorylation, Localization
 - Binding
 - Positive Regulaton, Negative Regulation, Regulation

BioNLP '09 Shared Task – Examples (1)

BioNLP '09 Shared Task – Examples (2)

BioNLP '09 Shared Task – Examples (2)

BioNLP '09 Shared Task – Examples (3)

7/32

 BioNLP
 IDF
 Document Wide Inference
 Results
 Summary

 00000000
 0000000000
 0000
 0000
 0000

BioNLP '09 Shared Task – Examples (3)

BioNLP '09 Shared Task – Examples (4)

BioNLP '09 Shared Task – Examples (4)

BioNLP	IDF	Document Wide Inference	Results	Summary
00000000				

BioNLP '09 Shared Task – Different Approaches

Multi-Step Workflow using classifiers (SVM...)

- 1 Detect Trigger Words
- 2 Attach Arguments
- Information flow in one direction
- \Rightarrow Propagation of errors!

BioNLP	IDF	Document Wide Inference	Results	Summary
00000000	00000	000000000	0000	000

BioNLP '09 Shared Task – Different Approaches

Multi-Step Workflow using classifiers (SVM...)

- 1 Detect Trigger Words
- 2 Attach Arguments
- Information flow in one direction
- \Rightarrow Propagation of errors!
- Models solving the whole task jointly
 - Information flow in all directions
 - \Rightarrow No propagation of errors!

BioNLP	IDF	Document Wide Inference	Results	Summary
00000000	00000	000000000	0000	000

BioNLP '09 Shared Task – Different Approaches

Multi-Step Workflow using classifiers (SVM...)

- 1 Detect Trigger Words
- 2 Attach Arguments
- Information flow in one direction
- \Rightarrow Propagation of errors!
- Models solving the whole task jointly
 - Information flow in all directions
 - \Rightarrow No propagation of errors!
- Neglected:
 - Modelling inter-event characteristics

BioNLP	IDF	Document Wide Inference	Results	Summary
0000000	00000	000000000	0000	000

BioNLP 2009 Shared Task – Results

	TEAM	F_1
-	Riedel2011	57.4
-	Miwa2010	56.3
-	Bjoerne2009	52.0
1	UTurku	52.0
-	Poon2010	50.0
-	McClosky2011	48.6
2	JULIELab	46.7
3	ConcordU	44.6
4	UT+DBCLS	44.4
5	VIBGhen	40.5
6	UTokyo	36.9
7	UNSW	34.9
8	UZurich	34.8
9	ASU+HU+BU	32.1

	TEAM	F_1
10	Cam	30.8
11	UAntwerp	30.6
12	UNIMAN	30.6
13	SCAI	30.3
14	UAveiro	29.4
15	Team 24	29.1
16	USzeged	27.2
17	NICTA	24.3
18	CNBMadrid	24.2
19	CCP-BTMG	22.7
20	CIPS-ASU	20.7
21	UMich	19.3
22	PIKB	19.3
23	Team 09	17.0
24	KoreaU	16.3

BioNLP	IDF	Document Wide Inference	Results	Summary
00000000	●0000		0000	000
Overview				

1 The BioNLP 2009 Shared Task on Event Extraction

- Task Definition
- Examples
- Approaches and Motivation
- Results

2 Imperatively Defined Factor Graphs (IDF)

- Factor Graphs
- Templates
- FACTORIE
- 3 Document Wide Inference for the BioNLP Shared Task with IDF
 Variables, Data Structure, Templates, Sampling, Objective
- 4 Results
- 5 Summary

BioNLP	IDF	Document Wide Inference	Results	Summary
00000000	o●ooo		0000	000
Factor G	raph			

A Factor Graph is a bipartite graph over factors and variables

BioNLP	IDF	Document Wide Inference	Results	Summary
00000000	o●ooo		0000	000
Factor G	raph			

A Factor Graph is a bipartite graph over factors and variables

BioNLP	IDF	Document Wide Inference	Results	Summary
00000000	o●ooo		0000	000
Factor Gr	aph			

- A Factor Graph is a bipartite graph over factors and variables
 - Factor \u03c6_i computes a scalar over all variables

BioNLP	IDF	Document Wide Inference	Results	Summary
00000000	o●ooo		0000	000
Factor G	iranh			

- A Factor Graph is a bipartite graph over factors and variables
 - Factor \u03c6_i computes a scalar over all variables
 - Let x be observed variables, y output variables

BioNLP	IDF	Document Wide Inference	Results	Summary
00000000	o●ooo		0000	000
Factor G	raph			

- A Factor Graph is a bipartite graph over factors and variables
 - Factor Ψ_i computes a scalar over all variables
 - Let x be observed variables, y output variables
 - Common definition:

$$\Psi_i(\vec{x}_i, \vec{y}_i) = \\ \exp\left(\sum_k heta_{ki} f_{ki}(\vec{x}_i, \vec{y}_i)\right)$$

(parameters θ_{ki} and sufficient statistics $f_{ki}(\cdot)$)

BioNLP	IDF	Document Wide Inference	Results	Summary
00000000	o●ooo		0000	000
Eactor G	ranh			

- A Factor Graph is a bipartite graph over factors and variables
 - Factor Ψ_i computes a scalar over all variables
 - Let x be observed variables, y output variables
 - Common definition:

$$\Psi_i(\vec{x}_i, \vec{y}_i) = \exp\left(\sum_k \theta_{ki} f_{ki}(\vec{x}_i, \vec{y}_i)\right)$$

(parameters θ_{ki} and sufficient statistics $f_{ki}(\cdot)$)

$$p(\vec{y}|\vec{x}) = \frac{1}{Z(\vec{x})} \prod_{i} \Psi_i(\vec{x}_i, \vec{y}_i)$$

 BioNLP
 IDF
 Document Wide Inference
 Results
 Summary

 00000000
 000
 0000
 000
 000

Templates for Factor Graphs

$$p(\vec{y}|\vec{x}) = \frac{1}{Z(\vec{x})} \prod_{i} \exp\left(\sum_{k} \theta_{ki} f_{ki}(\vec{x}_i, \vec{y}_i)\right)$$

Templates for Factor Graphs

Probability distribution

$$p(\vec{y}|\vec{x}) = \frac{1}{Z(\vec{x})} \prod_{i} \exp\left(\sum_{k} \theta_{ki} f_{ki}(\vec{x}_i, \vec{y}_i)\right)$$

Typically, a lot of parameter tying is applied:

 BioNLP
 IDF
 Document Wide Inference
 Results
 Summary

 00000000
 0000000000
 0000
 0000
 0000

Templates for Factor Graphs

$$p(\vec{y}|\vec{x}) = \frac{1}{Z(\vec{x})} \prod_{i} \exp\left(\sum_{k} \theta_{ki} f_{ki}(\vec{x}_i, \vec{y}_i)\right)$$

- Typically, a lot of parameter tying is applied:
- A Factor Template T_j consists of parameters θ_{jk} and statistic functions f_{jk} and some description of variables yielding tupels (x_j, y_j)

 BioNLP
 IDF
 Document Wide Inference
 Results
 Summary

 00000000
 000
 0000
 000
 000

Templates for Factor Graphs

$$p(\vec{y}|\vec{x}) = \frac{1}{Z(\vec{x})} \prod_{i} \exp\left(\sum_{k} \theta_{ki} f_{ki}(\vec{x}_i, \vec{y}_i)\right)$$

- Typically, a lot of parameter tying is applied:
- A Factor Template T_j consists of parameters θ_{jk} and statistic functions f_{jk} and some description of variables yielding tupels (\vec{x}_j, \vec{y}_j)
- Parameters θ_{jk} , feature functions f_{jk} are shared across tupels

 BioNLP
 IDF
 Document Wide Inference
 Results
 Summary

 00000000
 0000000000
 0000
 0000
 000

Templates for Factor Graphs

$$p(\vec{y}|\vec{x}) = \frac{1}{Z(\vec{x})} \prod_{i} \exp\left(\sum_{k} \theta_{ki} f_{ki}(\vec{x}_i, \vec{y}_i)\right)$$

- Typically, a lot of parameter tying is applied:
- A Factor Template T_j consists of parameters θ_{jk} and statistic functions f_{jk} and some description of variables yielding tupels (\vec{x}_j, \vec{y}_j)
- Parameters θ_{jk} , feature functions f_{jk} are shared across tupels
- The resulting probability distribution (\mathcal{T} set of templates):

$$p(\vec{y}|\vec{x}) = \frac{1}{Z(\vec{x})} \prod_{T_j \in \mathcal{T}} \prod_{(\vec{x}_i, \vec{y}_i) \in T_i} \exp\left(\sum_k \theta_{kj} f_{kj}(\vec{x}_i, \vec{y}_i)\right)$$

BioNLP	IDF	Document Wide Inference	Results	Summary
00000000	○○○●○		0000	000
FACTORIE				

- Imperatively Defined Factor Graphs (IDF) allow to define Factor Graphs in an imperatively manner (as the name says...)
- FACTORIE is an implementation of IDF in Scala
- Markov Chain Monte Carlo inference
- Only one world is required to be represented
- Variables which do not change, are not evaluated
- \Rightarrow Huge graphs possible!

BioNLP	IDF	Document Wide Inference	Results	Summary
00000000	○○○○●		0000	000
FACTOR	RIE			

IDF programming typically consists of 4 stages:

- **1** Design a data representation, assign variables
- 2 Design templates T_j which define the graphical structure
- 3 Implement application specific sampling (speed up inference)
- 4 Read data, learn parameters, test, evaluate

BioNLP	IDF	Document Wide Inference	Results	Summary
	00000		0000	000

Overview

1 The BioNLP 2009 Shared Task on Event Extraction

- Task Definition
- Examples
- Approaches and Motivation
- Results
- 2 Imperatively Defined Factor Graphs (IDF)
 - Factor Graphs
 - Templates
 - FACTORIE
- 3 Document Wide Inference for the BioNLP Shared Task with IDF
 Variables, Data Structure, Templates, Sampling, Objective
- 4 Results
- 5 Summary

BioNLP	IDF	Document Wide Inference	Results	Summary
		00000000		

Document is sequence of Sentences

0000000	00000	00000000	0000	000
00000000	00000	00000000	0000	000

- Document is sequence of Sentences
- Sentence is sequence of Tokens
- Token represents token in Sentence

BioNLP	IDF	Document Wide Inference	Results	Summary
		00000000		

- Document is sequence of Sentences
- Sentence is sequence of Tokens
- Token represents token in Sentence
- Span defines subset of consecutive Tokens

00000000	00000	000000000	0000	000
BioNLP	IDF	Document Wide Inference	Results	Summary

- Document is sequence of Sentences
- Sentence is sequence of Tokens
- Token represents token in Sentence
- Span defines subset of consecutive Tokens
- Event is on Span, has Arguments and Type

BioNLP	IDF	Document Wide Inference	Results	Summary
T I ·			0000	000

Templates and Graphical Structure

Templates define the graphical structure!

BioNLP	IDF	Document Wide Inference	Results	Summary
Template	es and Gra	phical Structure	0000	000

Templates define the graphical structure!

Single Event Templates

- Measuring only on a single, isolated event (and its attributes)
- Features (conjunctions with each other in each category)

BioNLP	IDF	Document Wide Inference	Results	Summary
00000000	00000	00●0000000	0000	000
Templates	s and Gra	phical Structure		

Templates define the graphical structure!

Single Event Templates

- Measuring only on a single, isolated event (and its attributes)
- Features (conjunctions with each other in each category)
 Trigger String, Stem, Dictionary, Pre-Hyphen, Event-Type, Normalized Event-Type

BioNLP	IDF 00000	Document Wide Inference	Results	Summary
Template	es and Gra	phical Structure		

Templates define the graphical structure!

Single Event Templates

- Measuring only on a single, isolated event (and its attributes)
- Features (conjunctions with each other in each category)
 - Trigger String, Stem, Dictionary, Pre-Hyphen, Event-Type, Normalized Event-Type
 - Trigger and Argument Trigger features with dependency path, argument, argument type

Templates define the graphical structure!

Single Event Templates

- Measuring only on a single, isolated event (and its attributes)
- Features (conjunctions with each other in each category)
 - Trigger String, Stem, Dictionary, Pre-Hyphen, Event-Type, Normalized Event-Type
 - Trigger and Argument Trigger features with dependency path,

argument, argument type

Argument Pair Dependency Path, position to trigger, with trigger features

 BioNLP
 IDF
 Document Wide Inference
 Results
 Summary

 October
 October
 October
 October
 October

 Templates and Graphical Structure
 Summary
 October
 October

Templates define the graphical structure!

Single Event Templates

- Measuring only on a single, isolated event (and its attributes)
- Features (conjunctions with each other in each category)
 - Trigger String, Stem, Dictionary, Pre-Hyphen, Event-Type, Normalized Event-Type
 - Trigger and Argument Trigger features with dependency path,

argument, argument type

Argument Pair Dependency Path, position to trigger, with trigger features

⇒ n-gram dependency sub-paths used additionally (used parser: Charniak-Johnson reranking parser with McClosky-Charniak biomedical parsing model)

Templates and Graphical Structure – Examples

Trigger

- secret
- secreted
- secret+Localization
- In-Dict
- Trigger and Argument
 - secret+Theme+Gene
 - secret+Theme+Gene+Localization
 - nsubjpass↑
 - nsubjpass ↑+Localization

Templates and Graphical Structure – Examples

BioNLP	IDF	Document Wide Inference	Results	Summary
		000000000		

Templates and Graphical Structure – Examples

BioNLP	IDF	Document Wide Inference	Results	Summary
		000000000		

Templates and Graphical Structure

Event Pair Templates

- Measuring the relation between two events
- Features (again with conjunctions)
 - Parent-Child Unrolls for every event-A—event-B pair where A is argument of B
 - \Rightarrow features as in trigger-argument feature
 - Document-Wide Unrolls for all events *in a document* which share the same gene (simple co-reference)
 - \Rightarrow features are the transitions of the event types

Templates and Graphical Structure – Example

BioNLP	IDF	Document Wide Inference	Results	Summary
		0000000000		

How to change the structures in a random walk like manner?

1st phase: Over all Spans (which are not of a Gene)

- 1 Add Events with all possible types
- 2 Keep best fitting (according to model score)
- 3 Add all possible argument structures
- 4 Keep best fitting or remove whole Event

BioNLP	IDF	Document Wide Inference	Results	Summary
		0000000000		

How to change the structures in a random walk like manner?

1st phase: Over all Spans (which are not of a Gene)

- 1 Add Events with all possible types
- 2 Keep best fitting (according to model score)
- 3 Add all possible argument structures
- 4 Keep best fitting or remove whole Event

2nd phase: Over all Events

- Add argument (Cause or another Theme, dependent on event type)
- Remove argument
- Exchange argument with another event
- Remove whole event

BioNLP	IDF	Document Wide Inference	Results	Summary
		0000000000		

BioNLP	IDF	Document Wide Inference	Results	Summary
		0000000000		

BioNLP	IDF	Document Wide Inference	Results	Summary
		000000000		

Two Objective Functions

Objective on a single Event

$$f_1(e) = \text{TP}(e) - \text{FP}(e)$$
$$\text{TP}(e) = \mathbf{1}_{\text{TriggType}} + \text{TP}_{\text{ArgTrigg}} + \text{TP}_{\text{Arg}}$$

 \Rightarrow Cannot handle multiple, identical events

Objective on a sentence

$$f_2(s) = \mathrm{TP}_{\mathrm{TriggTypeTheme}} - \mathrm{FP}_{\mathrm{TriggTypeTheme}}$$

25/32 Roman Klinger - Inter-Event Dependencies support Event Extraction

BioNLP	IDF	Document Wide Inference	Results	Summary
00000000	00000		●000	000
Overview				

1 The BioNLP 2009 Shared Task on Event Extraction

- Task Definition
- Examples
- Approaches and Motivation
- Results

2 Imperatively Defined Factor Graphs (IDF)

- Factor Graphs
- Templates
- FACTORIE
- 3 Document Wide Inference for the BioNLP Shared Task with IDF
 Variables, Data Structure, Templates, Sampling, Objective
- 4 Results
- 5 Summary

BioNLP	IDF	Document Wide Inference	Results	Summary
			0000	

Results – Document Wide Template

	GE	L	Ph	PC	Т	В	R	PR	NR
G. expression	0.5				0.1	0.1		0.2	0.1
Localization	0.2	0.4				0.1		0.1	0.1
Phosphorylation			0.6	0.1		0.3			
Prot. Catabolism	0.1		0.3	0.4		0.2			
Transcription	0.2	0.1			0.1		0.1	0.4	
Binding	0.1					0.6	0.1	0.1	
Regulation	0.1					0.2	0.1	0.4	0.1
Pos. Regulation	0.1					0.1	0.1	0.1	
Neg. Regulation	0.1						0.1	0.3	0.4

BioNLP	IDF	Document Wide Inference	Results	Summary
00000000	00000		00●0	000
Developr	ment Set			

Configuration	Precision	Recall	F_1	F_1 Reg.	
No Arg-Pair	68.4	45.3	54.5	43.6	*
No parent event	68.9	45.8	55.0	43.8	
No doc-wide	68.3	45.3	54.4	43.6	*
Best	68.5	46.7	55.6	45.6	
Miwa 2010	_	_	55.6		
Riedel 2011	67.9	51.8	58.7		

BioNLP	IDF	Document Wide Inference	Results	Summary
00000000	00000		000●	000
Test Set				

Event Class	Prec.	Rec.	F_1
Gene Expression	78.7	62.7	69.8
Transcription	71.0	16.1	26.2
Protein Catabolism	85.7	42.9	57.1
Phosphorylation	79.3	79.3	79.3
Localization	93.3	40.2	56.2
Binding	56.7	34.0	42.5
Regulation	45.0	23.0	30.6
Positive Regulation	56.9	31.8	40.8
Negative Regulation	51.5	31.1	38.8
Total	65.0	40.0	49.6

BioNLP	IDF	Document Wide Inference	Results	Summary
00000000	00000		0000	●00
<u> </u>				

Overview

1 The BioNLP 2009 Shared Task on Event Extraction

- Task Definition
- Examples
- Approaches and Motivation
- Results

2 Imperatively Defined Factor Graphs (IDF)

- Factor Graphs
- Templates
- FACTORIE
- 3 Document Wide Inference for the BioNLP Shared Task with IDF
 Variables, Data Structure, Templates, Sampling, Objective
- 4 Results
- 5 Summary

BioNLP	IDF	Document Wide Inference	Results	Summary
00000000	00000		0000	○●○
Summary				

 BioNLP Shared Task is especially difficult because of nested structures (goes beyond often addressed Protein-Protein-Interaction)

BioNLP	IDF	Document Wide Inference	Results	Summary
00000000	00000		0000	○●○
Summary				

- BioNLP Shared Task is especially difficult because of nested structures (goes beyond often addressed Protein-Protein-Interaction)
- FACTORIE is a powerful and intuitive framework for probabilistic programming and allows to address the BioNLP shared task in a joint manner

BioNLP	IDF	Document Wide Inference	Results	Summary
00000000	00000		0000	○●○
Summary				

- BioNLP Shared Task is especially difficult because of nested structures (goes beyond often addressed Protein-Protein-Interaction)
- FACTORIE is a powerful and intuitive framework for probabilistic programming and allows to address the BioNLP shared task in a joint manner
- Inter-Event, especially document-wide features have a positive impact!

Thank YOU for your attention!